当前位置:爱学网学习教育免费教案数学教案初三数学教案人教版九年级数学上册《24.1 圆(第3课时)》教案

人教版九年级数学上册《24.1 圆(第3课时)》教案

12-26 13:39:33   浏览次数:256  栏目:初三数学教案
标签:初三数学教案模板,初中数学教案模板, 人教版九年级数学上册《24.1 圆(第3课时)》教案,http://www.2xuewang.com
一、复习引入
    请同学们口答下面两个问题.
    1.什么叫圆心角?
2.圆心角、弦、弧之间有什么内在联系呢?
    顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.
    二、探索新知
问题:如图所示的⊙O,我们在射门游戏中,设E、F是球门,设球员们只能在 所在的⊙O其它位置射门,如图所示的A、B、C点.通过观察,我们可以发现像∠EAF、∠EBF、∠ECF这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.
    现在通过圆周角的概念和度量的方法回答下面的问题.
    1.一个弧上所对的圆周角的个数有多少个?
    2.同弧所对的圆周角的度数是否发生变化?
    3.同弧上的圆周角与圆心角有什么关系?
    (学生分组讨论)提问二、三位同学代表发言.
   
    下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.”
    (1)设圆周角∠ABC的一边BC是⊙O的直径,如图所示
    ∵∠AOC是△ABO的外角
    ∴∠AOC=∠ABO+∠BAO
    ∵OA=OB
    ∴∠ABO=∠BAO
    ∴∠AOC=∠ABO
    ∴∠ABC= ∠AOC
(2)如图,圆周角∠ABC的两边AB、AC在一条直径OD的两侧,那么∠ABC= ∠AOC吗?请同学们独立完成这道题的说明过程.
    老师点评:连结BO交⊙O于D同理∠AOD是△ABO的外角,∠COD是△BOC的外角,那么就有∠AOD=2∠ABO,∠DOC=2∠CBO,因此∠AOC=2∠ABC.
(3)如图,圆周角∠ABC的两边AB、AC在一条直径OD的同侧,那么∠ABC= ∠AOC吗?请同学们独立完成证明.
    老师点评:连结OA、OC,连结BO并延长交⊙O于D,那么∠AOD=2∠ABD,∠COD=2∠CBO,而∠ABC=∠ABD-∠CBO= ∠AOD- ∠COD= ∠AOC
    现在,我如果在画一个任意的圆周角∠AB′C,同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的.
    从(1)、(2)、(3),我们可以总结归纳出圆周角定理:
    在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    进一步,我们还可以得到下面的推导:
    半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
    下面,我们通过这个定理和推论来解一些题目.
    例1.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?
    分析:BD=CD,因为AB=AC,所以这个△ABC是等腰,要证明D是BC的中点,只要连结AD证明AD是高或是∠BAC的平分线即可 请点击下载Word版完整教案:人教版九年级数学上册《24.1 圆(第3课时)》教案教案《人教版九年级数学上册《24.1 圆(第3课时)》教案》来自www.2xuewang.com网!/JiaoAn/ShuXueJA9/78656.html

,人教版九年级数学上册《24.1 圆(第3课时)》教案
联系我们 | 网站地图 | 范文大全 | 管理资料 |学习教育试题课件下载加入收藏