当前位置:爱学网学习教育免费教案数学教案初三数学教案新人教版九年级数学下册《26.3实际问题与二次函数(2)》教案

新人教版九年级数学下册《26.3实际问题与二次函数(2)》教案

12-26 13:45:35   浏览次数:440  栏目:初三数学教案
标签:初三数学教案模板,初中数学教案模板, 新人教版九年级数学下册《26.3实际问题与二次函数(2)》教案,http://www.2xuewang.com
一、复习巩固
    1.如何用待定系数法求已知三点坐标的二次函数关系式?
    2.已知二次函数的图象经过A(0,1),B(1,3),C(-1,1)。    (1)求二次函数的关系式,
    (2)画出二次函数的图象;    (3)说出它的顶点坐标和对称轴。
    答案:(1)y=x2+x+1,(2)图略,(3)对称轴x=-,顶点坐标为(-,)。
    3.二次函数y=ax2+bx+c的对称轴,顶点坐标各是什么?
    [对称轴是直线x=-,顶点坐标是(-,)]
二、范例
    例1.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式。
    分析:二次函数y=ax2+bx+c通过配方可得y=a(x+h)2+k的形式称为顶点式,(-h,k)为抛物线的顶点坐标,因为这个二次函数的图象顶点坐标是(8,9),因此,可以设函数关系式为: y=a(x-8)2+9
  由于二次函数的图象过点(0,1),将(0,1)代入所设函数关系式,即可求出a的值。
  请同学们完成本例的解答。
  练习:P18练习1.(2)。
  例2.已知抛物线对称轴是直线x=2,且经过(3,1)和(0,-5)两点,求二次函数的关系式。
  解法1:设所求二次函数的解析式是y=ax2+bx+c,因为二次函数的图象过点(0,-5),可求得c=-5,又由于二次函数的图象过点(3,1),且对称轴是直线x=2,可以得
  解这个方程组,得:  所以所求的二次函数的关系式为y=-2x2+8x-5。
  解法二;设所求二次函数的关系式为y=a(x-2)2+k,由于二次函数的图象经过(3,1)和(0,-5)两点,可以得到    解这个方程组,得:
   所以,所求二次函数的关系式为y=-2(x-2)2+3,即y=-2x2+8x-5。
   例3。已知抛物线的顶点是(2,-4),它与y轴的一个交点的纵坐标为4,求函数的关系式。
   解法1:设所求的函数关系式为y=a(x+h)2+k,依题意,得y=a(x-2)2-4
    因为抛物线与y轴的一个交点的纵坐标为4,所以抛物线过点(0,4),于是a(0-2)2-4=4,解得a=2。所以,所求二次函数的关系式为y=2(x-2)2-4,即y=2x2-8x+4。
    解法2:设所求二次函数的关系式为y=ax2+bx+c?依题意,得解这个方程组,得: 所以,所求二次函数关系式为y=2x2-8x+4。
三、课堂练习
  1. 已知二次函数当x=-3时,有最大值-1,且当x=0时,y=-3,求二次函数的关系式。
  解法1:设所求二次函数关系式为y=ax2+bx+c,因为图象过点(0,3),所以c=3,又由于二次函数当x=-3时,有最大值-1,可以得到 请点击下载Word版完整教案:新人教版九年级数学下册《26.3实际问题与二次函数(2)》教案教案《新人教版九年级数学下册《26.3实际问题与二次函数(2)》教案》来自www.2xuewang.com网!/JiaoAn/ShuXueJA9/79424.html

,新人教版九年级数学下册《26.3实际问题与二次函数(2)》教案
《新人教版九年级数学下册《26.3实际问题与二次函数(2)》教案》相关文章
联系我们 | 网站地图 | 范文大全 | 管理资料 |学习教育试题课件下载加入收藏